The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X 0 X 0 X 0 X X^2 X 0 X X^2 0 X X^2 1 1 1 1 0 X 0 X^2+X 0 X^2+X 0 X 0 X^2+X 0 X 0 X^2+X 0 X X^2 X^2+X X^2 X X^2 X^2+X X^2 X X^2 X^2+X X^2 X X^2 X^2+X X^2 X X^2+X X X^2+X X X^2+X X X^2+X X X X X^2+X X X^2+X 0 X X X 0 0 0 X^2 0 0 X^2 0 0 0 X^2 0 0 X^2 0 X^2 X^2 X^2 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 0 0 X^2 0 X^2 0 X^2 0 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 0 0 X^2 X^2 0 0 0 X^2 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 X^2 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 0 X^2 X^2 X^2 0 X^2 0 0 X^2 0 0 X^2 0 X^2 0 X^2 0 X^2 X^2 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 X^2 X^2 0 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 X^2 0 0 X^2 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 X^2 0 0 X^2 0 0 generates a code of length 53 over Z2[X]/(X^3) who´s minimum homogenous weight is 50. Homogenous weight enumerator: w(x)=1x^0+42x^50+116x^52+52x^54+8x^56+34x^58+1x^64+2x^72 The gray image is a linear code over GF(2) with n=212, k=8 and d=100. This code was found by Heurico 1.16 in 0.0742 seconds.